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Abstract 

In this work, we present the analysis of behavioral trend of Klein-Gordon Equation involving potential as regards when it comes 

to the study of particle, it has been observed that in every case of handling of KGE with potential of any type, it is made clear here 

that the equation has to first off all be transformed into a particular standard differential equation with a well-known solution 

which appears in form of implicitly defined transcendental equation. The equation on the other hand is to be solved analytically 

since the exact solution is not easily attainable without the use of mathematical tool especially when it comes to the consideration 

of the energy eigenvalue and the corresponding wave function because the solution is also always accompanied with a 

normalization constant often coupled with a condition that requires an arbitrarily chosen quantum number that come up when 

(l=0) and so on. In general, the analysis reveals the fact that the of trend of KGE involving potential gives a good understanding 

in the study of inter-molecular structure, diatomic crystals, and such case that involves inter-atomic interaction which is gives 

very nice idea in the study of bound state in atom. 
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1. Introduction 

Many authors have used one form potential out of different 

known potentials to solve Klein-Gordon or Dirac relativistic 

equation in order to study free particle behavior or to ascertain 

its energy Eigen value [1-9] the case of KGE, it describe so 

well spin-zero particle if potential is applied because it enable 

the reduction of complex KGE to solvable equation state such 

that the exact solution or the analytical solution can be ob-

tained [10-14]. With this, it still requires the use of good 

mathematical methods such as the variational method, func-

tional analysis, supers metric approach, Nikiforov-Uvarov 

(NU, the asymptotic iteration method and so on In recent 

period, work has been carried out on to study bound state of 

KGE for a number of special potentials [1, 15] even in the 

case of equal vector and scalar potential [16], because it re-

duces KGE to a Schrodinger type of equation which could in 

turn be transformed into hypergeometric differential equation 

that has a known solution using [17-20] and this is more 

reason why KGE is receiving attention considerably in the 

literature when it comes to use of potentials [21, 22]. In fact it 

has been shown that exact solution are possible with some 
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certain central potentials [23-26] which has help in investi-

gation of bound states of the KGE for that particular potential 

which on the other hand has invariably led to derivation of the 

exact expression of the energy eigenvalues and the corre-

sponding normalized eigenfunctionns in terms of some spe-

cial polynomials and hypergeometrical function [16, 27-29]. 

In this work we intend to analyze the trend of Klein- Gordon 

Equation when different potential is applied into it to study 

particle as the equation is complicated to be used in isolation 

in the study of particle. 

2. Theoretical Procedure 

Here we first present the mathematical incursion by first of 

all considering spherical symmetric coulomb potential in 

Klein-Gordon Equation in order to write it in the form of 

stationary Klein-Gordon equation as given below. 

2
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Separating the equation in terms of the wave function, we 

have 
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The solution to the last equation is spherical harmonic 

( 1), lmY l l  l=0, 1, 2, and ( 1), lmY l l      (6) 

This leads to radial differential 
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And then with 
( )

( ) 
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u r
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, equation 6 is transformed into 
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Equation 7 is a confluent of hypergeometric differential 

equation. 

2.1. Klein-Gordon Equation for Exponential 

Potential 

Now for Klein-Gordon equation for exponential potential, 

we consider the potential in the form of ( )


 
r

aV r Z e  for 

which  represent the Summerfield fine structure constant 

that characterizes the range of the potential, and then with 

restriction to state and (l=0) the KGE becomes 

2
2

2
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Where 2k  has been defined by equation 8 
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equation 9 is transformed to 

2 22

2 2

1
1 4{ } 0
4


    

p ad w i a
w

ctdt t

            (11) 

Where 
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Equation (10) in its form stands for Wittaher differential 

equation that has a regular solution as given below with N as 

its normalization factor 
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To deduce the eigenvalue equation for the solution of the 

http://www.sciencepg.com/journal/ajmp


American Journal of Modern Physics http://www.sciencepg.com/journal/ajmp 

 

14 

energy eigenvalue, R(r) has to vanish at r=0 in order to 

guarantee the normalization of the radial wave function and 

this will result to the eigenvalue equation 

1
,1 2 ;2 0
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F iz

c
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This equation is implicit in nature and as such for the de-

termination of the energy eigenvalue  , the solution can only 

be handled by using numerical approach. 

2.2. KGE for Scalar Potential 

In this case we consider 1
r

 potential with scalar interac-

tion of the form ( ) zw
r


 which is coupled to the square of 

mass directly with a long range 1
r

 interaction to yields a 

transformed KGE with an arbitrary scalar interaction of the 

form 
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Further simplification is carried out by making the fol-

lowing substitution 
2

  om c
r r

c
, and this transforms the equation into the fol-

lowing form 
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Now we simplify the interaction by the making use of by 

making use of the followings 
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Equation 16 becomes 
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Then going further with 2  br , we get 
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At  and 0 , equation 18 is decomposed into 

two; 
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Having a solution of the form 2( )


R e  

And the other one 
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Thus the general solution of the system of the equation 

becomes 

1 2( ) ( )
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Where ( )F  is yet to be determined. 

Putting equation 21 into equation 18, leads to 
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This equation is known as equation Kummer’s differential 

equation with a known solution given 

as ( ) F ( 1 ,2 2, )   I IF l c l          (24) 

with the energy eigenvalue given as 

2
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This evidentially shows that the orbital quantum number l 

is not involved while the solution of the Laguerre polynomial 

yields the radial wave function 

2.3. KGE for Square- Well Potential 

This involves coupling minimally potential V to KGE in 

order facilitate the transformation of the equation into solva-

ble state. The potential is given as 

0{ oV for r R
for r RV


                  (26) 

Whereby we set 
2 2 2

1

1
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and 

2 2 21
( ) o ok m c

c
 for r R         (28) 

KGE is transformed using equation 27 into 
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This in turn led to 
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Represents Bessel equation whose solution for r R  is 

( ) ( ) ji ju N k r                (33) 

With exclusion of the Neumann function due to its regular 

value at 0  for V=0, the energy eigenvalue is deduced 

numerically from equation 31 by considering the equality of 

logarithmic derivatives of the solution from recurrence solu-

tion obtained from Bessel equation at r=R, using iteration 

method [19-22] with N being the normalization factor which 

is symmetric for positive and negative energy eigenvalue 

where 

2 2 21
( )  ok m c

c
              (33) 

3. Analysis 

This analysis indicates that direct application of KGE in the 

study of particle could not yield exact solution tenable for 

appropriate description of particle especially, spin-0 particle 

as expected. 

Rather it was more emphatic that the equation needs first of 

all to be transformed into one form of differential equation or 

the other that has a known solution or that can be handled 

more easily using one form of mathematical method or the 

other. [9-12] 

In the first case here that involves spherical coulomb po-

tential, the KGE is needed to be transformed into hypergeo-

metric differential equation as shown equation 8 and for the 

one that involves exponential potential, a transformation has 

to be into Wittaher’s differential equation as shown in equa-

tion 9, while the last two as presented here are needed to be 

transformed into Kummer’s and Bessel’s differential equation 

respectively to easy out the solution since some of them have 

one form of known solution in form of polynomial whose 

coefficient forms a set of elementary symmetric polynomials, 

and whose solution is based on one mathematical tool an 

approach that has simplicity and flexibility in leading to ap-

proximation and analysis of the eigenvalue and eigenfunction 

as exact solution is not attainable with KGE when it comes the 

behavior of the particle in any type of potential 

4. Conclusion 

From this analysis, it was clearly showcased that KGE in-

volving potential meant to study particle requires a transfor-

mation before the deduction of an expression for the energy 

eigenvalue and the corresponding wave function which of 

course has to be achieved from the transformed equation 

whose solution is often implicitly defined transcendentally in 

nature and as such requires mathematical tool that can handle 

such a case analytically without restriction as in the literature 

[13-14]. In general, this reveals the fact that the analysis of 

trend of KGE involving potential gives good understanding in 

the study of inter-molecular structure, diatomic crystals and 

such case that involves inter-atomic interaction [30-31] and 

also very good in the study of bound state in atom. 
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