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Abstract: In this article we obtain the Coulombian potential of spinor and scalar particle with the quantum field theory, there
is no difference between the spinor and scalar particle. Similarly the Newtonian potential of spinor particle and scalar particle
are also obtained with the quantum field theory, however it is found that the Newtonian potential of scalar particle is half of the
Newtonian potential of spinor particle with same mass, it contradicts with the equality of gravitational and inertial mass. The
Newtionian potential of the spinor particle can be used to obtain the Newtonian potentials of the sun,the earth and so on, therefore
we suggest that it should be considered to be the experimental test of the gravitational theory of Einstein.
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1. Introduction
There are two interesting things to us, one is that the

Coulombian potential used to treat the hydrogen bound state
is introduced classically, so far, we have not had any attempt
to get it by quantum field theory. The other thing is that the
Newtonian potential is the logical inference of the classical
Einstein theory, up to now we have not had any attempt to
get it by quantum field theory. In this article we try firstly
to obtain the Coulombian potential of the spinor and scalar
particle with the quantum field theory, it is found that both
give the same Coulomb potential with the same electric charge.
Secondly we try to obtain the Newtonian potential of the spinor
and scalar particle with the quantum field theory, it is found
that the Newtonian potential of the scalar particle is half of
the Newtonian potential of the spinor particle with same mass,
obviously it contradicts with the equality of the gravitational
and inertial mass.

Section 2 is devoted to the general formalism of QED
including one charged spinor and one scalar field[1]. In
the quantum theory of hydrogen bound state the electron
is bound by the proton with the classical Coulombian
potential. How we can get the classical Coulomb potential
from the of quantum field theory, we assume that the
electromagnetic field appearing in the equation of motion of
the electromagnetic field is a classical field but the material

fields are taken to be quantum fields so the equation of motion
of the electromagnetic field becomes a q-number equation.
Furthermore at the weak-field approximation the material
fields should be free fields, then one needs only the plane
wave solutions of the material fields, especially the solution
of the zero momentum is expressed in detail, also the δ(x)
function is suggested to describe the point particle, finally the
Coulombian potential of the static point charged spinor and
scalar particle are obtained and there is no difference between
spinor and scalar particle with the same electric charge.

Section 3 is devoted to the general formalism of the Einstein
theory including tetrad, spinor and scalar field [2, 3, 4, 5, 6]
and also the Lagrange field which is necessary owing to
the suggesting constraint gµν − EµαE

ν
βη

αβ [7, 8, 9] . In
the Newton theory the Newtonian potential is taken to be a
classical field which determine the movement of planets; in
the Einstein theory the movement of the planets with low-
velocity is determined by the metric, then one can determine
the metric from the Newton theory, that means this metric is
not the direct inference of the Einstein theory[5, 7], the reason
is of the lacking of a spinor field in the general formalism
of Einstein theory[10, 11, 12] . Therefore we should firstly to
get the equations of motion for various fields especially the
equations of motion at the weak-field approximation. For the
present aim of getting the Newtonian potential we need only
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the approximation equation of motion of the metric where the
energy-momentum tensor is determined by the free spinor and
scalar field as motioned in section 2 . By the same procedure
the metric field is considered to be a classical field but the
spinor and scalar field are quantum field then the Einstein
equation is a q-number equation. We use the δ(x) function
to describe the static point spinor and scalar particle then we
obtain the Newtonian potential of the spinor and scalar particle
but the Newtonian potential of the scalar particle is half of the
Newtonian potential of spinor particle with the same mass. it

contradicts with the equality of gravitational and inertial mass
[13] .

2. The Coulomb Potential for Spinor
and Scalar Particle

The action for the system including electromagnetic field,
one spinor field, one complex scalar field is well known[1]

I = −
∫

1

4
FµνF

µνd4x +

∫
ψ̄[iγµ(∂µ − ieAµ)−M ]ψd4x +

∫
[((∂µ − ieAµ)ϕ)†(∂µ − ieAµ)ϕ−m2ϕ†ϕ]d4x, (1)

from which we get the equations of motion, especially the equation of motion of the electromagnetic field

∂µF
µν = eψ̄γνψ

+ ie[ϕ†(∂ν − ieAν)ϕ− ((∂ν − ieAν)ϕ)†ϕ].
(2)

By using the Lorentz gauge, in the weak-field approximation (2) becomes

2Aν = eψ̄γνψ + ie[ϕ†∂νϕ− (∂νϕ)†ϕ]. (3)

In principle all the fields should be quantum fields but we want to obtain only the Coulombian potentials of the spinor particle
and the scalar particle, we will consider Aν being classical field and ψ, ϕ being free quantum fields. The Fourier plane wave
series of the free spinor and complex scalar field are

ψ(x, t) =
∑
s±

∑
p

1√
L3

√
M

Ep
[bpsu(p, s)e−ipx + d†psv(p, s)eipx], (4)

ψ̄(x, t) =
∑
s±

∑
p

1√
L3

√
M

Ep
[b†psū(p, s)eipx + dpsv̄(p, s)e−ipx], (5)

ϕ(x, t) =
∑
p

1√
2ωpL3

[a+pe
−ipx + a†−pe

ipx], (6)

ϕ†(x, t) =
∑
p

1√
2ωpL3

[a†+pe
ipx + a−pe

−ipx], (7)

where we suppose that the variable region of x is a box with each side L , then the periodic boundary condition requires that the
momentum p will be

pi =
2πni
L

, ni = integer , s = ±1

2
, EP =

√
P 2 +M2 , ωP =

√
P 2 +m2, (8)

here bps , dps, a+P , a−P and b†ps , d†ps, a
†
+P , a†−P are operators satisfying the usual commutation relations.

Our purpose is to get the Coulombian potential for static particle so ψ , ϕ in (3) should be replaced by

ψ(x, t)→
∑
s±

1√
L3

[b0su(0, s)e−imt + d†0sv(0, s)eimt], (9)

ψ̄(x, t)→
∑
s±

1√
L3

[b†0sū(0, s)eimt + d0sv̄(0, s)e−imt], (10)

ϕ(x, t)→ 1√
2mL3

[a+0e
−imt + a†−0e

imt], (11)

ϕ†(x, t)→ 1√
2mL3

[a†+0e
imt + a−0e

−imt], (12)



American Journal of Modern Physics 2021; 10(2): 36-40 38

The c-number relation (3) will be obtained by the matrix elements of single static particles, these include the single static
particle |1b0s> , single static anti-particle |1d0s > , single static positive charge boson |1+0 > , single static negative charge
boson |1−0 > , it is easy to realize that Ai = 0, we have

2A0 =< 1b0s| : e
∑
s±

1√
L3

[b†0sū(0, s)eimt + d0sv̄(0, s)e−imt]γ0 ×
∑
s±

1√
L3

[b0su(0, s)e−imt + d†0sv(0, s)eimt] : |1b0s >

= e
1

L3
ū(0, s)γ0u(0, s) = e

1

L3
u†(0, s)u(0, s) = e

1

L3
, (13)

where e 1
L3 is the density of the electric charge, we suppose that the corresponding expression of static point particle at the origin

can be obtained by the substitution

e
1

L3
→ eδ(x), (14)

One gets
4A0 = −eδ(x) , A0 =

e

4πr
. (15)

Similarly for the static point anti-particle

4A0 = eδ(x) , A0 = − e

4πr
. (16)

For the single positive charged boson, one obtains

2A0 = ie
1

2mL3
< 1+0| : (a†+0e

imt + a−0e
−imt)∂0(a+0e

−imt + a†−0e
imt)ϕ−h.c. : |1+0 >= e

1

L3
, (17)

for the static point positive charged boson, by using the substitution (14) we have

4A0 = −eδ(x) , A0 =
e

4πr
. (18)

Similarly for the static point negative charged boson we
have

4A0 = eδ(x) , A0 = − e

4πr
. (19)

One sees that there is no difference in electric properties
between the charged spinor particle and the charged boson
particle.

3. The Newtonian Potential for Spinor
and Scalar Particle

The action for the system including gravitational field, one
spinor field, one complex scalar field in the tetrad formalism is
[2-6]

I =
1

16πG

∫
R
√
−gd4x +

∫
ψ̄(iγµDµ −M)ψ

√
−gd4x

+

∫
λσρ(gσρ − gσµgρνĒµEν)

√
−gd4x

+

∫
[gµν

∂ϕ†

∂xµ
∂ϕ

∂xν
−m2ϕ†ϕ]

√
−gd4x. (20)

Where we assume that for every space-time point x there is
a tangent space of Hilbert space, or Lorentz space simply, in
which one can define scalar fieldϕ , spinor fieldψ, furthermore
for each direction µ of the Riemann space, there are four
tetrad fields Eµ(x) of the Lorentz space with four components
Eµα, the four vectors are also contravariant vectors under the

general coordinate transformation. We choose the latter Greek
alphabets µ, ν, · · · to denote the index of the left column of
Eµα, their raising and lowing are with gµν and choose the
former Greek alphabets α, β, · · · to denote the index of the
right column of Eµα their raising and lowing are with ηαβ ,
we use the convention digηαβ = (1,−1,−1,−1). By the
tetrad fields one can obtain the the covariant derivative of the
spinor field under the locally Lorentz transformation then one
can obtain the action of spinor field to be invariance under
both the Lorentz transformation and the general coordinate
transformation. In addition we suppose a constraint gµν −
EµαE

ν
βη

αβ and the corresponding Lagrange multiplier field
λσρ .

γµ = Eµαγ
α. (21)

Dµψ = (∂µ +Aµ)ψ, (22)

Aµ =
1

2
σαβEσα∂µEσβ =

1

2
σαβgσρE

σ
α∂µE

ρ
β , (23)

σαβ =
1

4
[γα, γβ ], (24)

[σαβ , σγδ] = ηβγσαδ − ηαγσβδ − ηδασγβ + ηδβσγα, (25)

(ωαβ) εγ = (δαγ δ
β
ε − δαε δβγ )ηεε, (26)
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[ωαβ , ωγδ] = ηβγωαδ − ηαγωβδ − ηδαωγβ + ηδβωγα. (27)

By (20) one obtains the equations of motion for ψ,ϕ, λσρ ,
especially the Einstein equation

Rµν −
1

2
gµνR = −8πGTµν . (28)

Up to now we have no a quantum theory of gravitation so
we consider the gravitational field to be classical field, but the
fieldsψ,ϕ are quantum fields. In the weak-field approximation

Eµα = ηµα + eµα , |eµα| << 1, (29)
gµν = ηµν − sµν , |sµν | << 1, (30)
sµν = eµν + eνµ, (31)

we have obtained the approximate energy-momentum tensor of spinor field [6], and now the approximate energy-momentum
tensor of scalar field can be obtained easy, so the approximate Einstein equation is

2sµν = 16πG(Tµν −
1

2
ηµνT

λ
λ), (32)

Tµν =:
1

2
ψ̄i(γµ∂ν + γν∂µ)ψ : + :

1

2
(∂µϕ

†∂νϕ+ ∂νϕ
†∂µϕ)− 1

2
[(∂λϕ

†)(∂λϕ)−m2ϕ†ϕ]ηµν : . (33)

Because ψ,ϕ are quantum fields, a classical equation is a matrix elements between quantum states, our purpose is to get the
Newtonian potential of the static spinor particle and static scalar particle then we need only the terms (9), (10), (11), (12).

For the static single spinor particle one can see that the only non-zero matrix element is

< 1b0s|T00|1b0s > =< 1b0s|
1

2
ψ̄i(γ0∂0 + γ0∂0)ψ|1b0s >

=
1

L3
< 1b0s| : [b†0sū(0, s)eiMt + d0sv̄(0, s)e−iMt]iγ0∂0[b0su(0, s)e−iMt + d†0sv(0, s)eiMt] : |1b0s >

=
1

L3
Mū(0, s)γ0u(0, s) =

1

L3
Mu†(0, s)u(0, s) =

M

L3
. (34)

As mentioned above, M 1
L3 is the density of the energy-momentum tensor, we suppose that the corresponding expression of

static point particle at the origin can be obtained by the substitution (14).

< 1b0s|T00|1b0s >= Mδ(x), (35)

4s00 = 4sii = −8πMδ(x) , 4s0i = 4si0 = 0, (36)

s00 = sii =
2MG

r
, s0i = si0 = 0. (37)

For the static single single anti-particle, it is easy to have

< 1d0s|T00|1d0s >= Mδ(x), (38)

so the static single single anti-particle give the same Newtonian potential.
For the single positive static boson particle and the single negative static boson particle we have

< 1+0|T00|1+0 >=
1

4mL3
< 1+0|ie : [∂0(a†+0e

imt + a−0e
−imt)× ∂0(a+0e

−imt + a†−0e
imt) + h.c.]|1+0 >=

m

2L3
, (39)

< 1−0|T00|1−0 >=
1

4mL3
< 1−0|ie : [∂0(a†+0e

imt + a−0e
−imt)× ∂0(a+0e

−imt + a†−0e
imt) + h.c.]|1−0 >=

m

2L3
, (40)

for the static point boson particle we have

< 1+0|T00|1+0 >=< 1−0|T00|1−0 >=
m

2
δ(x), (41)

4s00 = 4sii = −4πmGδ(x) , 4s0i = 4si0 = 0, (42)
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s00 = sii =
mG

r
, s0i = si0 = 0. (43)

So we can conclude that the Newtonian potential of the
static point boson particle is half of the Newtonian potential
of the static point spinor particle with the same mass. It can be
also proved that the relations of (42)(43) are applicable to the
case of neutral boson particle.

4. Discussion
In the tetrad formalism the gravitational interaction is

described by sixteen fields Eµα, its meaning can be recognized
more clearly in the weak-field approximation, where the metric
gµν are determined by the symmetric part of eµν and the Aµ
are determine by the anti-symmetric part of eµν .

Aµ =
1

2
σαβgσρE

σ
α∂µE

ρ
β
∼=

1

4
σαβ∂µaαβ ,

aαβ = eαβ − eβα. (44)

one gets the equation of motion of the spinor field
approximately

(iγµ∂µ −M)ψ + i
1

4
γδσαβ∂δaαβψ ∼= 0, (45)

γµ = (ηµα +
1

2
sµα +

1

2
aµα)γα. (46)

One can see clearly that the gravitational effects of spin
is of the small higher effect, although it is very difficult to
treat theoretically and experimentally but its existence is not
unacceptable.

The introducing of constraint gµν − EµαE
ν
βη

αβ seems
by hands because in the Lagrangian form of the usual
gauge theory the constraint appears naturally, however in
the Hamiltonian formalism of the usual gauge theory the
constraint is look like also as by hands. So we think this
question is not a fundamental problem, the more importance
is about the self-consistence of this constraint, in other words
in order to maintein the constraint one should find next
constraints and so on, or this constraint is incorrect by the
Hamiltonian equation[8, 9]. Unfortunately up to now we have
no a theory of quantum gravitational field, so we assume that
gµν − EµαEνβηαβ is the only constraint.

5. Conclusion
Firstly the Coulombian potential of the boson and spinor

particle are obtained by quantum field theory, and also the

Coulombian potential of the proton is already known, so
this calculation may be used the check the reliability of our
computing method. Secondly the Newtonian potential of the
spinor particle have been used to get the Newtonian potential
of our solar system [5, 6, 7], so the Newtonian potential of the
spinor particle may be considered to be the experimental test of
Einstein theory [6]. Thirdly the Newtonian potential of scalar
particle is half of the Newtonian potential of spinor particle
with the same mass, it contradicts the classical concept. This
result reminds us that the invariance of the general coordinate
transformation is the fundamental principle, in some cases the
quantum theory give us a very different physical picture as one
met in the Dirac theory of electron. We expect to have the
experimental test although it is very difficult.
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[13] R. v. Eötvös, Math. Nat. Ber. Ungarn 8 65 (1890).


